Stat 201: Introduction to Statistics

Standard 4: Graphical Summaries Chapter Two

Summaries

Graphical Displays

Variable Type	Graphical Display	Numerical Summary	
Categorical	Pie chart or bar graph	Frequency table	
Quantitative	Histogram or box plot – can also try dotplot or stem & leaf	Quantitative Summary	
1-Categorical and 1- Quantitative	Side by Side boxplots	Quantitative Summary for groups	
2-Categorical	Side by side pie charts or bar graphs best: stacked bar chart	Contingency Table or side by side frequency tables	
2-Quantitative	Scatter plot	Side by side Quantitative Summaries	

Misrepresentation of Data

 You should be able to look at your graphs and realize when you've made a mistake

-The percentages of all relative frequency graphs should add to 1 or 100%

-The scale should be understandable and constant

-Consider whether or not you need to start your y axis at zero or caution against misreading the graph

-Graphs should be simple and easy to interpret correctly in just a few moments.

Walkthrough

Summarizing Qualitative Data: Pie Chart

Number of Votes for Candidates in 2012 SC Primary

 Useful when there are a small number of categories

Data: Graphical Summary

• <u>StatCrunch Command:</u>

Graph \rightarrow Pie Chart \rightarrow w/data \rightarrow Select your variable(s) \rightarrow Compute

Summarizing Qualitative Data: Bar Graph

- Useful when there are many categories of the variable
- Useful to compare groups

Summarizing Qualitative Data: Bar Graph

 Note: the relative frequency chart has the same shape but a different y-axis

Data: Graphical Summary

• <u>StatCrunch Command:</u>

Graph \rightarrow Bar Plot \rightarrow w/data \rightarrow Select your variable(s) \rightarrow Compute

Categorical Summary: Side by Side Bar Graph

 We could draw bar graphs side by side to compare the data for the two different groups.

Data: Graphical Summary

• <u>StatCrunch Command:</u>

Graph \rightarrow Bar Plot \rightarrow w/data \rightarrow Select the variable you'd like on the x-axis \rightarrow Group by the variable you would like the bars to be split by \rightarrow Compute

Quantitative Summary: Dot Plot

- Useful for smaller datasets
- Useful for finding outliers
- I don't like these histograms are almost always better

Data: Graphical Summary

• <u>StatCrunch Command:</u>

Graph \rightarrow Dot Plot \rightarrow w/data \rightarrow Select the variable(s) \rightarrow Compute

Quantitative Summary: Stem and Leaf

• Retains actual data values

Example: Number of calories for a large serving of French Fries at Fast Food Restaurants (source: http://www.acaloriecounter.com/fast-food.php)

570	500	500	540	566	631	610
400	400	640	550	700	280	380
480	430	370	380	490	310	620
450	730	260				

Stem Unit = hundreds, Leaf Unit = Tens Variable: Calories

2:68 3:1788 4:003589 5:004577 6:1234 7:03

Data: Graphical Summary

• <u>StatCrunch Command:</u>

Graph \rightarrow Stem and Leaf \rightarrow Select the variable(s) \rightarrow Compute

Summarizing Quantitative Data: Histogram

 Histograms are used to summarize quantitative data and will be our main tool for continuous data

Number of Goals Scored in EPL '13-'14 Matches

Number of Goals

Summarizing Quantitative Data: Histogram

• Note: the relative frequency chart has the same shape but a different y-axis

Number of Goals Scored in EPL '13-'14 Matches

Number of Goals

Data: Graphical Summary

• <u>StatCrunch Command:</u>

Graph→Histogram→ Select the variable(s)→Compute

• With bar charts, each column represents a group defined by a categorical variable

• With histograms, each column represents a group defined by a quantitative variable.

 With bar charts, each column represents a group defined by a class of a qualitative (categorical) variable

 With histograms, each column represents a group defined by a quantitative variable. R will automatically generate classes for the quantitative data

 In our example of EPL goals over the '13-'14 season the groups that R creates for the histogram are as follow

[0,1]	102
(1,2]	82
(2,3]	70
(3,4]	63
(4,5]	39
(5,6]	17
(6,7]	4
(7,8]	1
(8,9]	2

 In this case, because there are so few observable values the histogram is actually a little misleading – it just combines the bars at 0 and 1 and the rest is the same as the bar plot

Summarizing Quantitative Data: Histograms

- Let's consider a different dataset as we mentioned earlier, the small number of observable values allows us to use the qualitative(categorical) approach with this EPL data
- We will continue looking at histograms by considering the discrete quantitative data considering the quarterly presidential approval ratings from '54 to '74

Summarizing Quantitative Data: Histograms

- Among the quarterly presidential approval ratings there are 49 observable values ranging from 23 (Truman in '51) to 87(Truman in '45)
- Here, if we followed what we did for qualitative (categorical data) we would find a frequency table with 49 rows and a bar graph with 49 bars
- Here a histogram is easily a better visual

Summarizing Quantitative Data: Histograms

 In our example of Presidential approval ratings the groups that R creates for the histogram are as follow:

[20,30]	8
(30,40]	14
(40,50]	16
(50,60]	23
(60,70]	27
(70,80]	23
(80,90]	43

- In many cases we're looking at two groups and comparing them.
- Here we consider the EPL goals data and compare it to another league to see if teams score more or less over their season
- The following graphs compare goals in the EPL '13-'14 season and goals in the MLS '13 season

Number of Goals Scored in EPL and MLS Matches

- Here. we consider the presidential approval data and split it into democratic and republican presidents to compare the two parties ratings
- The following graphs compare quarterly ratings of republican and democrat presidents

Quarterly Presidential Approval Ratings

Approval Rating

Quantitative Summary: Histogram Shapes

Uniform

Random

Bimodal

Quantitative Summary: Histogram Shapes

Bell-shaped - Unimodal

 $mean \approx median$

Skewed Right

mean > median

Skewed Left

mean < median

Histogram

• Spread:

Histogram

• Shape:

Histogram

• Gap vs. Outlier:

Quantitative Summary: Histograms – Left Skewed

 Here we see a left skewed graph – the extreme values on the left drag the mean to the left tail causing Mean<Median

Quantitative Summary: Histograms – Bell Shaped

 Here there is no skew – the extreme values on both side cancel any outlying effect on the mean

Quantitative Summary: Histograms – Left Skewed

 Here we see a right skewed graph – the extreme values on the right drag the mean to the right tail causing Mean>Median

Median

Remember: With graphs, if it's ugly it's probably not right.

Gallons of beer per capita 14, 1, 1.92% 19.5, 1, 1.92% 22, 1, 1.92% 23, 1, 1.92% 23.2, 1, 1.92% 24.1, 1, 1.92% 26, 1, 1.92% 26.1, 1, 1.92% 27, 1, 1.92% 27.6, 1, 1.92% 27.8, 1, 1.92% 27.9, 1, 1.92%

Remember: With graphs, if it's ugly it's probably not right.

Misrepresentation of Data

 You should be able to look at your graphs and realize when you've made a mistake

-The percentages of all relative frequency graphs should add to 1 or 100%

-The scale should be understandable and constant

-Consider whether or not you need to start your y axis at zero or caution against misreading the graph

-Graphs should be simple and easy to interpret correctly in just a few moments.