Stat 201: Introduction to Statistics

Standard 4: Graphical Summaries
 Chapter Two

Summaries

Graphical Displays

Variable Type	Graphical Display	Numerical Summary
Categorical	Pie chart or bar graph	Frequency table
Quantitative	Histogram or box plot - can leaf	Quantitative Summary
1-Categorical and 1- Quantitative	Side by Side boxplots	Quantitative Summary for groups
2-Categorical	Side by side pie charts or bar graphs best: stacked bar chart	Contingency Table or side by side frequency tables
2-Quantitative	Scatter plot	Side by side Quantitative Summaries

Misrepresentation of Data

- You should be able to look at your graphs and realize when you've made a mistake
-The percentages of all relative frequency graphs should add to 1 or 100%
-The scale should be understandable and constant
-Consider whether or not you need to start your y
axis at zero or caution against misreading the graph
-Graphs should be simple and easy to interpret
correctly in just a few moments.

Walkthrough

Summarizing Qualitative Data: Pie Chart

Number of Votes for Candidates in 2012 SC Primary

- Useful when there are a small number of categories

Data: Graphical Summary

- StatCrunch Command:

Graph \rightarrow Pie Chart \rightarrow w/data \rightarrow Select your variable(s) \rightarrow Compute

Summarizing Qualitative Data: Bar Graph

- Useful when there are many categories of the variable
- Useful to compare groups

Summarizing Qualitative Data: Bar Graph

- Note: the relative frequency chart has the same shape but a different y-axis

Data: Graphical Summary

- StatCrunch Command:

Graph \rightarrow Bar Plot \rightarrow w/data \rightarrow Select your variable(s) \rightarrow Compute

Categorical Summary: Side by Side Bar Graph

- We could draw bar graphs side by side to compare the data for the two different groups.

Data: Graphical Summary

- StatCrunch Command:

Graph \rightarrow Bar Plot $\rightarrow \mathrm{w} /$ data \rightarrow Select the variable you'd like on the x-axis \rightarrow Group by the variable you would like the bars to be split by \rightarrow Compute

Quantitative Summary: Dot Plot

- Useful for smaller datasets
- Useful for finding outliers
- I don't like these histograms are
 almost always better

Data: Graphical Summary

- StatCrunch Command:

Graph \rightarrow Dot Plot \rightarrow w/data \rightarrow Select the variable(s) \rightarrow Compute

Quantitative Summary: Stem and Leaf

- Retains actual data values

```
Example: Number of calories for a large serving of French Fries at Fast Food Restaurants
(source: http://www.acaloriecounter.com/fast-food.php)
\begin{tabular}{lllllll}
570 & 500 & 500 & 540 & 566 & 631 & 610 \\
400 & 400 & 640 & 550 & 700 & 280 & 380 \\
480 & 430 & 370 & 380 & 490 & 310 & 620 \\
450 & 730 & 260 & & & &
\end{tabular}
Stem Unit = hundreds, Leaf Unit = Tens
Variable: Calories
2:68
3:1788
4:003589
5:004577
6:1234
7:03
```


Data: Graphical Summary

- StatCrunch Command:

Graph \rightarrow Stem and Leaf \rightarrow Select the variable(s) \rightarrow Compute

Summarizing Quantitative Data: Histogram

- Histograms are used to summarize quantitative data and will be our main tool for continuous data

Number of Goals Scored in EPL '13-'14 Matches

Summarizing Quantitative Data: Histogram

- Note: the relative frequency chart has the same shape but a different y-axis

Number of Goals Scored in EPL '13-'14 Matches

Data: Graphical Summary

- StatCrunch Command:

Graph \rightarrow Histogram \rightarrow Select the variable(s) \rightarrow Compute

Histograms Vs. Bar Charts

- With bar charts, each column represents a group defined by a categorical variable
- With histograms, each column represents a group defined by a quantitative variable.

Histograms Vs. Bar Charts

- With bar charts, each column represents a group defined by a class of a qualitative (categorical) variable
- With histograms, each column represents a group defined by a quantitative variable. R will automatically generate classes for the quantitative data

Histograms Vs. Bar Charts

- In our example of EPL goals over the '13-'14 season the groups that R creates for the histogram are as follow

$[0,1]$	102
$(1,2]$	82
$(2,3]$	70
$(3,4]$	63
$(4,5]$	39
$(5,6]$	17
$(6,7]$	4
$(7,8]$	1
$(8,9]$	2

Histograms Vs. Bar Charts

Number of Goals Scored in EPL '13-'14 Matches
Number of Goals Scored in EPL '13-'14 Matches

Histograms Vs. Bar Charts

- In this case, because there are so few observable values the histogram is actually a little misleading - it just combines the bars at 0 and 1 and the rest is the same as the bar plot

Summarizing Quantitative Data: Histograms

- Let's consider a different dataset - as we mentioned earlier, the small number of observable values allows us to use the qualitative(categorical) approach with this EPL data
- We will continue looking at histograms by considering the discrete quantitative data considering the quarterly presidential approval ratings from '54 to ' 74

Summarizing Quantitative Data: Histograms

- Among the quarterly presidential approval ratings there are 49 observable values ranging from 23 (Truman in '51) to 87(Truman in '45)
- Here, if we followed what we did for qualitative (categorical data) we would find a frequency table with 49 rows and a bar graph with 49 bars
- Here a histogram is easily a better visual

Summarizing Quantitative Data: Histograms

Quarterly Presidential Approval Ratings

Quarterly Presidential Approval Ratings

Histograms Vs. Bar Charts

- In our example of Presidential approval ratings the groups that R creates for the histogram are as follow:

$[20,30]$	$\mathbf{8}$
$(30,40]$	14
$(40,50]$	16
$(50,60]$	23
$(60,70]$	27
$(70,80]$	23
$(80,90]$	43

Talking about Two Things at Once

- In many cases we're looking at two groups and comparing them.
- Here we consider the EPL goals data and compare it to another league to see if teams score more or less over their season
- The following graphs compare goals in the EPL ' $13-$-14 season and goals in the MLS '13 season

Talking about Two Things at Once

Number of Goals Scored in EPL and MLS Matches

Talking about Two Things at Once

- Here. we consider the presidential approval data and split it into democratic and republican presidents to compare the two parties ratings
- The following graphs compare quarterly ratings of republican and democrat presidents

Talking about Two Things at Once

Quarterly Presidential Approval Ratings

Quantitative Summary: Histogram Shapes

Uniform

Random

Bimodal

Quantitative Summary: Histogram Shapes

Bell-shaped - Unimodal
mean \approx median

Skewed Right
mean $>$ median

Skewed Left
mean $<$ median

Histogram

- Spread:

Histogram

- Shape:

Symmetric, unimodal,
bell-shaped

Skewed right

Skewed left

Non-symmetric, bimodal

Symmetric, bimodal

Histogram

- Gap vs. Outlier:

Quantitative Summary: Histograms - Left Skewed

- Here we see a left skewed graph - the extreme values on the left drag the mean to the left tail causing Mean<Median

Quantitative Summary: Histograms - Bell Shaped

- Here there is no skew - the extreme values on both side cancel any outlying effect on the mean

Mean = Median

Quantitative Summary: Histograms - Left Skewed

- Here we see a right skewed graph - the extreme values on the right drag the mean to the right tail causing Mean>Median

Remember: With graphs, if it's ugly it's probably not right.

Gallons of beer
per capita
I. $14,1,1.92 \%$

- 19.5, 1, 1.92\%

■ 22, 1, 1.92\%

- 23, 1, 1.92\%
- 23.2, 1, 1.92\%
24.1, 1, 1.92\%

26, 1, 1.92\%
■ 26.1, 1, 1.92\%

- 27, 1, 1.92\%
- 27.6, 1, 1.92\%
- 27.8, 1, 1.92\%

■ 27.9, 1, 1.92\%

Remember: With graphs, if it's ugly

 it's probably not right.

Misrepresentation of Data

- You should be able to look at your graphs and realize when you've made a mistake
-The percentages of all relative frequency graphs should add to 1 or 100%
-The scale should be understandable and constant
-Consider whether or not you need to start your y
axis at zero or caution against misreading the graph
-Graphs should be simple and easy to interpret
correctly in just a few moments.

